犀牛國際教育旗下指定官方網(wǎng)站~

課程咨詢熱線 400-656-1680

2024AMC8真題及完整版解析,還有歷年真題匯總!

發(fā)布時(shí)間:2025-01-16 09:36:47 編輯:Daisy來源:網(wǎng)絡(luò)

2024AMC8真題在哪里可以看?本文整理了完整版AMC8真題,還有詳細(xì)的解析,幫助有需要的同學(xué),還有歷年真題及答案

 
 
AMC8 2024完整版真題
 

 

Problems 1.
 

 

What is the ones digit of?

求下列算式結(jié)果的個(gè)位上的數(shù)字。(計(jì)算:基本運(yùn)算)

 

圖片

 

Problems 2.
 

 

What is the value of this expression in decimal form?

把下列算式的結(jié)果寫成小數(shù)形式是單位?

 

圖片

 

Problems 3.
 

 

Four squares of side length 4, 7, 9, and 10 units are arranged in increasing size order so that their left edges and bottom edges align. The squares alternate in color white-gray-white-gray, respectively,as shown in the figure. What is the area of the visible gray region in square units?

四個(gè)邊長分別為4、7、9和10單位的正方形按邊長遞增的順序排列,使得它們的左邊緣和底邊緣對(duì)齊。正方形交替填充為白色和灰色,如下圖所示?;疑糠值拿娣e是多少平方?

圖片

 

Problems 4.
 

When Yunji added all the integers from I through 9, she mistakenly left out a number. Her incorrect

sum turned out to be a square number. Which number did Yunji leave out?

當(dāng)Yunji從1加到9的時(shí)候,不小心遺漏了一個(gè)數(shù)字。使得錯(cuò)誤的和是一個(gè)平方數(shù)。那么Yunji遺漏的數(shù)字是多少?

 

(A)5     (B) 6     (C) 7      (D) 8       (E) 9

 

 

Problems 5.
 

Aaliyah rolls two standard 6-sided dice. She notices that the product of the two numbers rolled is a

multiple of 6. Which of the following integers cannot be the sum of the two numbers?

擲了兩個(gè)標(biāo)準(zhǔn)六面骰子。她發(fā)現(xiàn)擲出的兩個(gè)數(shù)字的乘積是6的倍數(shù)。以下哪個(gè)整數(shù)不能是這兩個(gè)數(shù)字的和?

(A) 5        (B) 6       (C) 7       (D) 8        (E) 9

 

Problems 6.
 

Sergei skated around an ice rink, gliding along different paths. The gray lines in the figures below

show four of the paths labeled P, Q, R, and S. What is the sorted order of the four paths from shortest

to longest?謝爾蓋在溜冰場(chǎng)周圍滑冰,沿著不同的路徑滑行。以下圖形中,灰色線條顯示了四條路徑P、Q、R和S。按照從最短到最長的順序,這四條路徑要如何排序?

 

圖片
Problems 7.
 

A 3 7 rectangle is covered without overlap by 3 shapes of tiles: 2 2, 1 4, and 1 1, shown below.

What is the minimum possible number of 1 1 tiles used?

一個(gè)3x7的矩形被無重疊地覆蓋了3種形狀的瓷磚:2x2、1x4和1x1。如下圖所示。使用的1x1瓷磚的最少可能數(shù)量是多少?

圖片

 

Problems 8.
 

On Monday Taye has $2. Every day, he either gains $3 or doubles the amount of money he had on the previous day. How many different dollar amounts could Taye have on Thursday, 3 days later?

在星期一,Taye有2美元。每天,他要么獲得3美元,要么將前一天的錢數(shù)翻倍。那么在三天后的星期四,Taye可能擁有多少不同的美元總金額?

 

(A) 3        (B) 4          (C) 5        (D) 6       (E) 7

Problems 9.
 

All of the marbles in Maria's collection are red, green, or blue. Maria has half as many red marbles as green marbles and twice as many blue marbles as green marbles. Which of the following could be the total number of marbles in Maria's collection?

瑪麗亞收集的彈珠都是紅色、綠色或藍(lán)色的?,旣悂啌碛械募t色彈珠數(shù)量是綠色彈珠的一半,擁有的藍(lán)色彈珠數(shù)量是綠色彈珠的兩倍。下面哪個(gè)可能是瑪麗亞收集的彈珠總數(shù)?

 

(A) 24 (B) 25 (C) 26 (D) 27 (E) 28

 

Problems 10.
 

In January 1980 the Mauna Loa Observatory recorded carbon dioxide (CO2) levels of 338 ppm (parts per million). Over the years the average CO2 reading has increased by about 1.515 ppm each year. What is the expected CO2 level in ppm in January 2030? Round your answer to the nearest integer:

1980年1月,莫納羅亞天文臺(tái)記錄的二氧化碳(CO2)水平為338ppm(百萬分之一)。多年來,平均CO2讀數(shù)每年增加約1.515ppm。2030年1月的預(yù)期CO2水平是多少ppm?四舍五入到最接近的整數(shù)。

(A) 399 (B) 414 (C) 420 (D) 444 (E) 459

 

Problems 11.
 

The coordinates of △ABC are A(5, 7), B(11, 7) and C(3, y), with y > 7. The area of △ABC is 12.What is the value of y?

三角形ABC的坐標(biāo)分別為A(5,7)、B(11,7)和C(3,y),其中y>7。三角形ABC的面積為12,求y的值。

圖片

(A) 8 (B) 9 (C) 10 (D) 11 (E) 12

 

Problems 12.
 

Rohan keeps a total of 90 guppies in 4 fish tanks.

● There is 1 more guppy in the 2nd tank than in the 1st tank.

● There are 2 more guppies in the 3rd tank than in the 2nd tank.

● There are 3 more guppies in the 4th tank than in the 3rd tank.

How many guppies are in the 4th tank?

羅罕總共在4個(gè)魚缸里養(yǎng)了90條孔雀魚。

-第二個(gè)魚缸里的孔雀魚比第一個(gè)魚缸里的多1條。

-第三個(gè)魚缸里的孔雀魚比第二個(gè)魚缸里的多2條。

-第四個(gè)魚缸里的孔雀魚比第三個(gè)魚缸里的多3條。

第四個(gè)魚缸里有多少條孔雀魚?

(A)20   (B)21    (C)23    D)24    (E) 26

 

 

Problems 13.
 

Buzz Bunny is hopping up and down a set of stairs, one step at a time. In how many ways can Buzz

start on the ground, make a sequence of 6 hops, and end up back on the ground? (For example, one

sequence of hops is up-up-down-down-up-down.)

一次只能跳一個(gè)臺(tái)階,正在上下跳躍。問Buzz有幾種方式可以從地面開始,跳躍6次,最終

(A) 20 (B) 21 (C) 23 (D) 24 (E) 26

回到地面?(例如,其中一種跳躍序列是上、上、下、下、上、下。)

圖片

 

 

Problems 14.
 

The one-way routes connecting towns A, M, C, X,Y, and Z are shown in the figure below (not

drawn to scale). The distances in kilometers along each route are marked. Traveling along these

routes, what is the shortest distance from A to Z in kilometers?

連接城鎮(zhèn)A、M、C、X、Y、Z的單向路線如下圖所示(未按比例繪制)。沿每條路線的距

離以公里為單位進(jìn)行標(biāo)記。沿著這些路線旅行所有城鎮(zhèn)都要去一遍,A到Z之間最短的距離是多少公里?

圖片
Problems 15.
 

 

圖片
Problems 16.
 

Minh enters the numbers 1 through 81 into the cells of a 9x 9 grid in some order. She calculates the

product of the numbers in each row and column. What is the least number of rows and columns that

could have a product divisible by 3?

將數(shù)字1到81按照某種順序放入9x9網(wǎng)格的單元格中。她計(jì)算每一行和每一列中數(shù)字的乘積可被3整除的行數(shù)和列數(shù)最少為多少?

(A)8

B) 9

(C) 10

(D) 11

E) 12

 

Problems 17.
 

A chess king is said to attack all the squares one step away from it, horizontally, vertically, ordiagonally. For instance, a king on the center square of a 3x3 grid attacks all 8 other squares. as shown below. Suppose a white king and a black king are placed on different squares of a 3x3 grid so that they do not attack each other. In how many ways can this be done?

據(jù)說國際象棋的國王可以攻擊其橫向、縱向或?qū)蔷€上相隔一步的所有空格。例如,位于3x3網(wǎng)格中心的國王可以攻擊其他8個(gè)空格,如下所示。假設(shè)白王和黑王被放置在3x3網(wǎng)格的不同方格中,并且他們按照箭頭方向移動(dòng)一格也無法碰到對(duì)方,它們就不會(huì)互相攻擊。有多少種方法可以做到這一點(diǎn)?

 

圖片

(A)20       (B)24          (C)27           (D) 28          (E) 32

 

Problems 18.
 

Three concentric circles centered at 0 have radii of 1,2, and 3. Points B and C lie on the largest

circle. The region between the two smaller circles is shaded, as is the portion of the region between

the two larger circles bounded by central angle BOC, as shown in the figure below. Suppose the

shaded and unshaded regions are equal in area. What is the measure of ∠BOC in degrees?

以0為中心的三個(gè)同心圓的半徑分別為1、2和3。點(diǎn)B和點(diǎn)C在最大的圓上。兩個(gè)較小的圓之間的區(qū)域被著色,兩個(gè)較大的圓之間BOC角的所夾的被著色的部分,如下圖所示。假設(shè)著色區(qū)域和未著色區(qū)域面積相等,則∠BOC的度數(shù)是多少?

 

圖片

 

(A) 108        (B) 120        (C) 135         (D) 144         (E) 150

 

Problems 19.
 

Jordan owns 15 pairs of sneakers. Three fifths of the pairs are red and the rest are white. Two thirds

of the pairs are high-top and the rest are low-top. The red high-top sneakers make up a fraction of

the collection. What is the least possible value of this fraction?

喬丹有15雙運(yùn)動(dòng)鞋。五分之三是紅色的,其余都是白色的。三分之二是高幫的,其余都是低幫的。紅色高幫運(yùn)動(dòng)鞋占總數(shù)的一小部分。這個(gè)分?jǐn)?shù)的最小可能值是多少?

圖片

Problems 20.
 

Any three vertices of the cube PQRSTUVW, shown in the figure below, can be connected to form a triangle. (For example, vertices P.Q.and R can be connected to form isosceles△PQR.) How many of these triangles are equilateral and contain P as a vertex?

如下圖所示,立方體PQRSTUVW的任意三個(gè)頂點(diǎn)都可以連接成一個(gè)三角形。(例如,頂點(diǎn) P、Q和R可以連接成等腰三角形▲POR。)這些三角形中,有多少個(gè)是等邊三角形并且包含P作為一個(gè)頂點(diǎn)?

 

圖片

Problems 21.

A group of frogs (called an army) is living in a tree. A frog turns green when in the shade and turns yellow when in the sun. Initially the ratio of green to yellow frogs was 3 : 1. Then 3 green frogs moved to the sunny side and 5 yellow frogs moved to the shady side. Now the ratio is 4 : 1. What is the difference between the number of green frogs and yellow frogs now?

一組青蛙(稱為軍隊(duì))住在樹上。在陰涼處的青蛙會(huì)變綠,在陽光下則會(huì)變成黃色。最初,綠蛙與黃蛙的比例是3:1。然后三只綠蛙移到陽光明媚的一側(cè),五只黃蛙移到陰涼處。現(xiàn)在的ratio是4:1?,F(xiàn)在綠蛙和黃蛙的數(shù)量差是多少?

(A) 10         (B) 12          (C) 16           (D) 20          (E) 24

Problems 22.
 

A roll of tape is 4 inches in diameter and is wrapped around a ring that is 2inches in diameter. A cross section of the tape is shown in the figure below. The tape is 0.015 inches thick. If the tape i completely unrolled, approximately how long would it be? Round your answer to the nearest 100 inches.

一卷磁帶的直徑為4英寸,并纏繞在直徑為2英寸的環(huán)上。如下圖所示是磁帶的橫截面。磁帶的厚度為0.015英寸。如果完全展開磁帶,它大約有多長?將答案四舍五入到最接近的100英寸。

 

圖片
Problems 23.
 

Rodrigo has a very large piece of graph paper. First he draws a line segment connecting point (0,4) to point (2,0) and colors the 4 cells whose interiors intersect the segment, as shown below. Next Rodrigo draws a line segment connecting point (2000,3000) to point (5000, 8000).Again he colors the cells whose interiors intersect the segment. How many cells will he color this time?

有一張很大的坐標(biāo)紙。首先,他用一條線段將點(diǎn)(0,4)和點(diǎn)(2,0)連接起來,并將線段經(jīng)過的4個(gè)單元格涂了顏色,如下圖所示。接下來,Rodrigo將點(diǎn)(2000,3000)與點(diǎn)(5000,8000)連接起來,并將線段與內(nèi)部相交的單元格涂了顏色。這次他會(huì)涂多少個(gè)單元格?

圖片
Problems 24.
 

Jean made a piece of stained glass art in the shape of two mountains, as shown in the figure below.

One mountain peak is 8 feet high and the other peak is 12 feet high. Each peak forms a 90°angle,and the straight sides of the mountains form 45° angles with the ground. The artwork has an area of 183 square feet. The sides of the mountains meet at an intersection point near the center of the artwork, h feet above the ground. What is the value of h?

(三角形的面積)Jean制作了一件山脈形狀的彩色玻璃藝術(shù)品,如下圖所示。一座山峰高8英尺,另一座山峰高12英尺。每個(gè)山峰形成了一個(gè)90°角,山脈的直角邊與地面成45°角。藝術(shù)品的面積為183平方英尺。山脈的兩側(cè)在藝術(shù)品中部的一個(gè)交匯點(diǎn)上連接,該交匯點(diǎn)離地面h英尺高。h的值是多少?

圖片
Problems 25.
 

A small airplane has 4 rows of seats with 3 seats in each row. Eight passengers have boarded the plane and are distributed randomly among the seats. A married couple is next to board. What is the probability there will be 2 adjacent seats in the same row for the couple?

一架小型飛機(jī)有4排座位,每排有3個(gè)座位。8名乘客先登機(jī)后隨機(jī)就坐。然后一對(duì)已婚夫婦隨后登機(jī)。這對(duì)夫婦坐在同一排且相鄰的概率是多少?

圖片

同學(xué)們做完真題可以在這里對(duì)答案!下面還有更詳細(xì)的解析哦!

圖片

 

 

2024AMC8真題解析

圖片

 

 

圖片
圖片
圖片
圖片
圖片
圖片
圖片

 

圖片
圖片
圖片
圖片

 

圖片
圖片
圖片
圖片

還有AMC8歷年真題可領(lǐng)取

 

圖片

關(guān)注公號(hào)掃碼領(lǐng)取

 

 
 
AMC8培訓(xùn)課程
 

 

犀牛國際針對(duì)2025-2026年備考AMC8數(shù)學(xué)競(jìng)賽的同學(xué),開設(shè)Pre-AMC8、AMC8基礎(chǔ)班,強(qiáng)化班、沖刺班、全程班等多種班型,針對(duì)不同年級(jí)不同基礎(chǔ)的學(xué)生,因材施教,確保學(xué)員能夠?qū)W的懂,跟得上。

  • Pre-AMC8課程主要面向低年級(jí)學(xué)生,教學(xué)內(nèi)容以小學(xué)奧數(shù)6大模塊以及小學(xué)數(shù)學(xué)重難知識(shí)點(diǎn)為主,目標(biāo)在于幫助低年級(jí)段學(xué)生拿到AMC8競(jìng)賽低齡成就獎(jiǎng)。

    圖片

  • AMC8課程是Pre-AMC8的進(jìn)階課程,要求學(xué)生有一定的數(shù)學(xué)基礎(chǔ),授課內(nèi)容以AMC8競(jìng)賽技巧,AMC8重難點(diǎn),代數(shù)以及高年級(jí)知識(shí)點(diǎn)為主要內(nèi)容,目標(biāo)在于幫助學(xué)員更好沖刺前1%和前5%獎(jiǎng)項(xiàng)。

 

圖片

我們?cè)?/span>上海、深圳,北京、蘇州、南京、無錫、青島、寧波、杭州、廣州、合肥、武漢、成都、重慶、天津、香港均開設(shè)的有線下校區(qū),其他城市可以參加線上網(wǎng)課,享受總部師資~

相關(guān)標(biāo)簽:

相關(guān)文章推薦/ARTICLE RECOMMENDED

犀牛競(jìng)賽資料庫

國際競(jìng)賽類資料

TOP